- V-polytopes P:= conv V
- H-polytopes P:= NH
- Thm H-polytope -> V-polytope

17/10/2022

 $\rangle \leq 1$

2.2. Polar duality

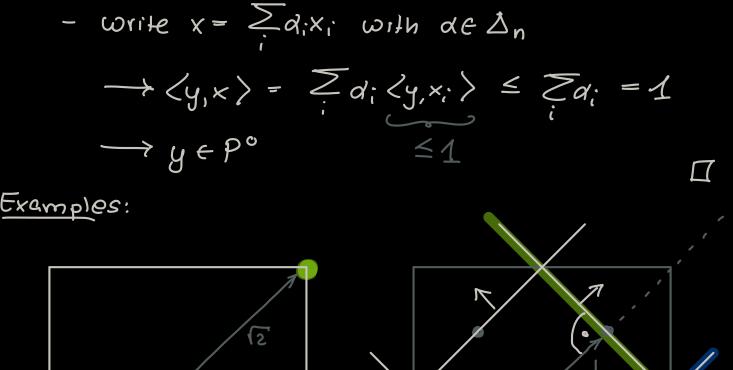
- · polytopes come in pairs

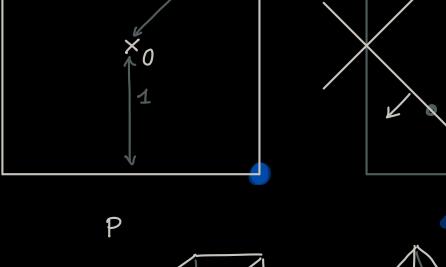
 $\underline{\mathcal{Lem}}: \quad \text{if } P = conv \quad \{x_1, \dots, x_n\}$

$$\rightarrow P^{o} := \left\{ y \in \mathbb{R}^{d} \mid \langle x_{i}, y \rangle \leq 1 \text{ for all } i \in (n] \right\}$$

 $\rightarrow P^{o} \text{ is a polyhedrom } =:$

Pooof :





- polor dual P° changer when P is scaled or translated!
- " of the same shope and size, maybe / rotaled or neflected "

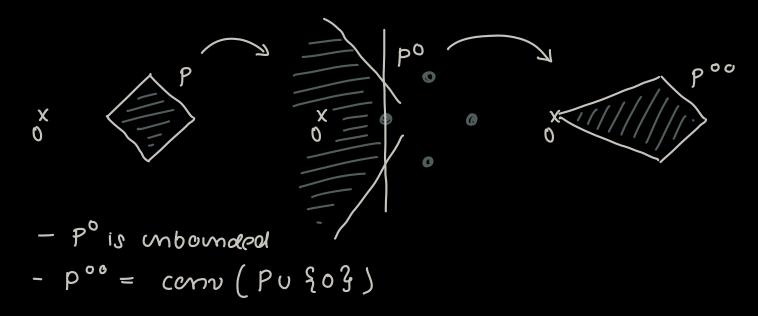
P°

- a polytope is self-poral if it is isometric to its polor dual
- Open: Which self-polor polytope has the Mahler smaller volume? Is if the simplex? (Mahler conjecture)

dem: if P is a V-polytope with
$$D \in int(P)$$

then $P^{oo} = P \leftarrow "dual"$ is justified
Proof: $x \in P^{oo} \Leftrightarrow \forall y \in P^{o}: \langle x, y \rangle \leq 1$
 $\Leftrightarrow \forall y \in \mathbb{R}^{d}: y \in P^{o} \rightarrow \langle x, y \rangle \leq 1$
 $\Leftrightarrow \forall y \in \mathbb{R}^{d}: (\forall x \in P : \langle x, y \rangle \leq 1)$
• $P \subseteq P^{oo}:$ $\rightarrow \langle x, y \rangle \leq 1$
• $P \subseteq P^{oo}:$ $\rightarrow \langle x, y \rangle \leq 1$ for all $x' \in P$
- for all $y \in P$: if $\langle x, y \rangle \leq 1$ for all $x' \in P$
then also when $x' = x$
 $\Rightarrow \langle x, y \rangle \leq 1$
• $P^{oo} \subseteq P$:
- suppore $x \notin P$
- by hyperplane separation
theorem exist a hyperplane
that separates x from P :
 $\exists a \in \mathbb{R}^{d} \setminus io_{3}, b \in \mathbb{R}$: $\langle x, a \rangle > b_{b}$
- since $O \in int(P)$ $\langle x', a \rangle \leq b_{b}$ $\forall x' \in P$
we have $b \neq 0$
- set $y := 9/b$
 $\Rightarrow \langle x, y \rangle > 1$ while $\langle x', y \rangle \leq 1$ $\forall x' \in P$
 $\Rightarrow x \notin P^{oo}$

Note: if 0 \$ int P then P = P



<u>dem</u>: if () ∈ int(P), then P° is unbounded. <u>Proof</u>:

$$- \exists \varepsilon > 0 : B_{\varepsilon}(0) \subset P$$

- if P° were inbounded, then $\exists y_{i_1}y_{z_1}\dots \in P^{\circ}$ with $\|y_i\| \longrightarrow \infty$ - $x_i := \varepsilon \cdot \frac{y_{i_1}}{y_{i_1}} \longrightarrow \|x_i\| = \varepsilon \longrightarrow x_i \in B_{\varepsilon}(0) \subset P$ = $\varepsilon \cdot \frac{y_{i_1}}{y_{i_1}} \longrightarrow \langle x_i \rangle$

$$= \left\{ \varepsilon \frac{y_{i}}{y_{i}}, y_{i} \right\}$$

$$= \left\{ \varepsilon \frac{y_{i}}{y_{i}}, y_{i} \right\}$$

$$= \varepsilon \frac{y_{i}}{y_{i}}, y_{i} \right\}$$

Lem: if P is bounded, then OE int (P°)

Proof : Ex (not hard)

 \Box

(molusions: (*)

if P is a (bounded) V-polytope with DE int(P) then p° is a (bounded) H-polytope with DE int(P")

$$\operatorname{conv} \{x_1, \dots, x_n\} \iff \bigcap_{i} \#(x_i, 1)$$

Thm: If P is a V-polytope, then P is on H-polytope Proof

- alter translation we can assume () E int (P)
- by (*) P° is an H-polytope with DE int(p°)
 > P° is also a V-polytope with DE int(p°)
 > P°° is an H-polytope

 II
 P

Finally. polytope := V-polytope = H-polytope

" a face is an interrection with a touching hyperplane

But this closes not capture everything that we want to call "face"
 missing: P and Q

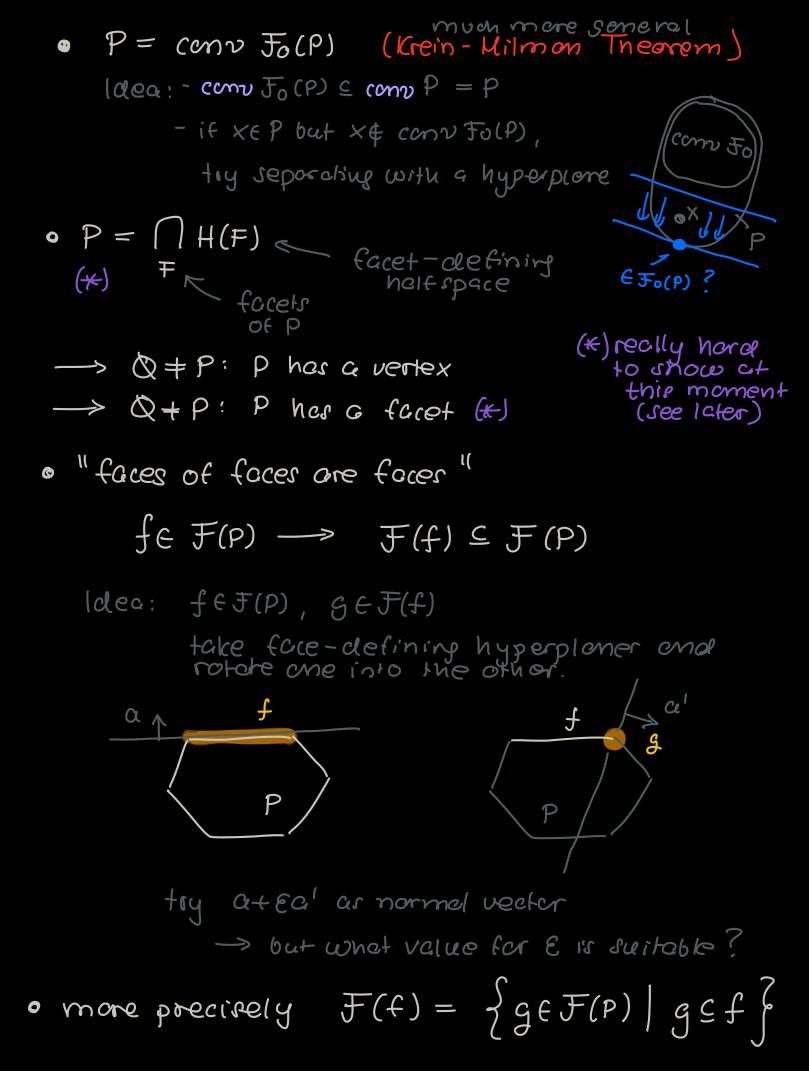
Def: • $\langle a, x \rangle \leq b$ is feasible if valial for all $x \in P$ • a face is $f := \begin{cases} x \in P \mid \langle a, x \rangle = b \end{cases} \subseteq P$ There are three cases: "face-alefining hyperplane" i) $a \neq 0$: $\frac{\partial H(a,b)}{\partial f}$ is exactly this intuitive "tooching h perplane"

ii)
$$a = 0, b = 0$$
: $\langle 0, x \rangle \leq 0$ valied for all $x \in P$
 $\longrightarrow \{x \in P \mid \langle 0, x \rangle = 0\} = P$ is a fore
iii) $a = 0, b > 0$: $\langle 0, x \rangle \leq b$ valied for all $x \in P$

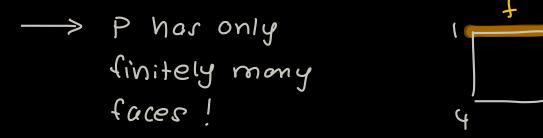
$$\Rightarrow \ \{x \in P \mid \langle o, x \rangle = b \ \mathcal{G} = \& \text{ is a face}$$

11

$F(P) := \{ faces of P \} \dots set of faces$ Properties of faces Ex: try prove some (most properties are "obviour" but not always • faces are only-opes eary to prove) - frivial for f = P or f = Q $- if f = b \cup \partial H \longrightarrow f = \bigcup H \cup H \cup H$ -> faces have well-defined dimension $\dim f := \dim aff(f)$ dim name & = "nullity" -1 \bigcirc Vertex $\mathcal{F}_{\delta}(P) := \left\{ \delta - \text{faces of } P \right\}$ edge 2 "face " 3 Cell proper faces 5 S-faces d-2 ridge facet d-1 P itself d



· every face of P is completely determined by the verticer of P that it contains



 $\int_{4}^{2} f^{2} = \begin{cases} 1,2 \\ 3 \end{cases}$

- in a d-simplex every subset of vertices definer a face -> Z^{d+1} faces
- this is the minimal amount possible in dim = d E_X : show that al-cube her 3^d facer

Open: (Kalai's 3^d conjecture)

The d-cube has the minimal amount of facer of every controlly symmetric d-poly. P = -P

2.4 The foce lattice

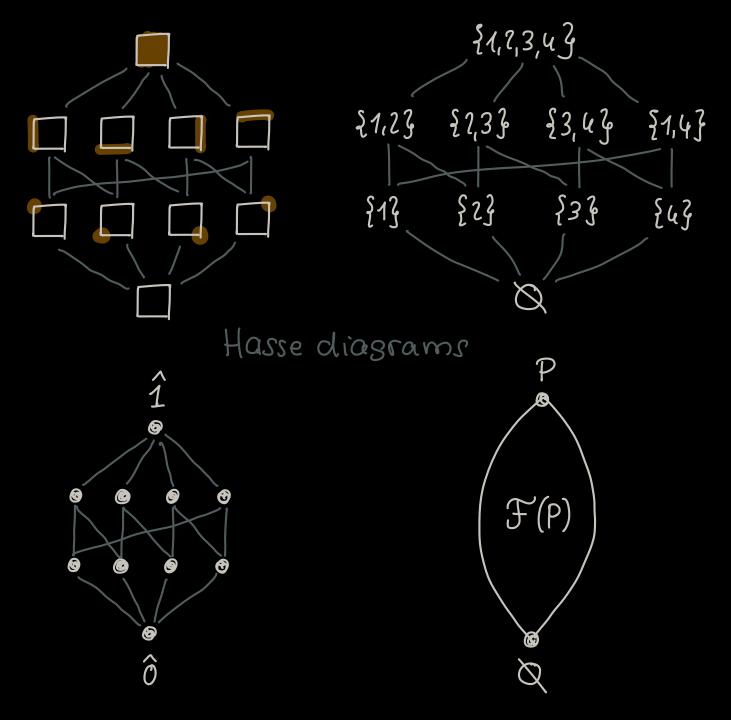
· F(P) is partially ordered by inclusion

particl order: 1) reflexive
$$f \subseteq f$$

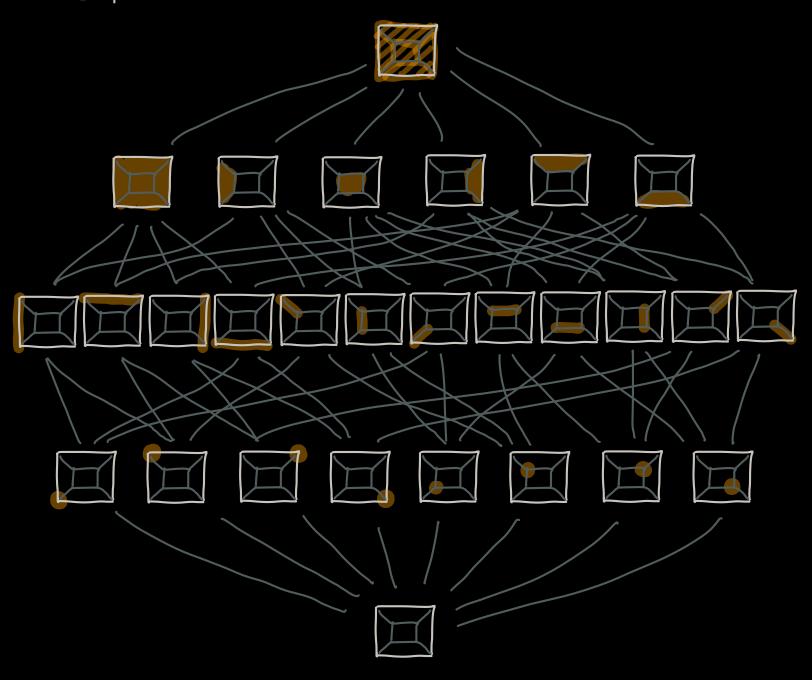
2) antisymmetric $f \subseteq g \land g \subseteq f$
 $\rightarrow f = g$
3) transitive $f \subseteq g \subseteq h$
 $\rightarrow f \subseteq h$

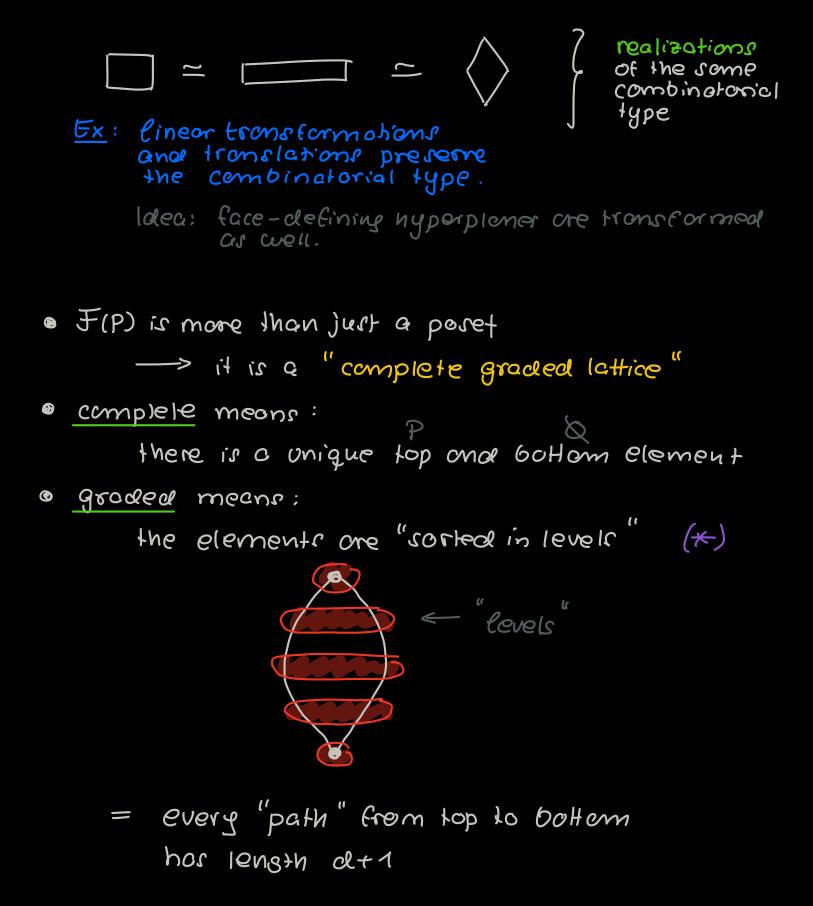
 \rightarrow (F(P), C) is a partially ordered set (poset)

<u>Example</u> : square

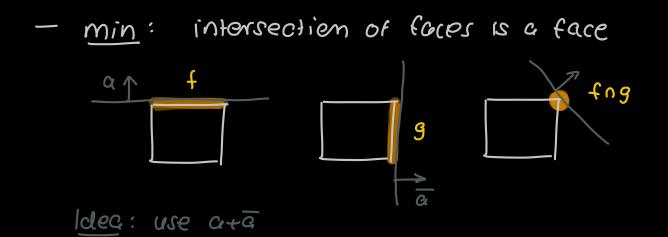


Example: cube

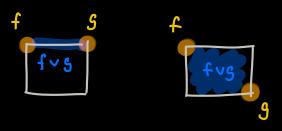




 <u>Cattice</u> means:
 for fige F(P) exists a max and min
 (a lattice is a special and structure; not to be confused with latticer such as Z)



- <u>max</u>: there exists a unique minimel face that contains both f onel g.



· Algorithmic considerations:

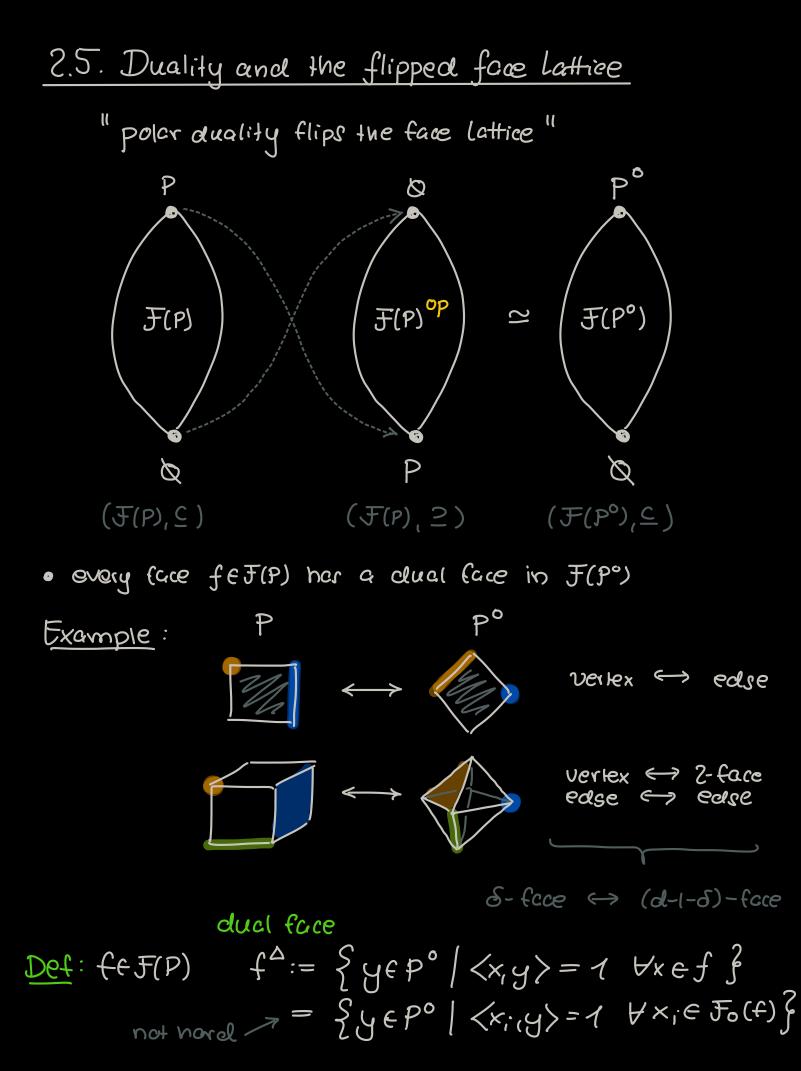
Given a lattice L, how hard is it to tell whether it is the face lattice of some polytope?

 \rightarrow NP-havel (for clim ≥ 4)

- Open: is it NP-complete?
 - is it CONP-complete?

f probably neithor

NOTE: it is decidable!! (this was wrongly stated in the lecture)



Thm: (i) f^{Δ} is a face of P° $\varphi: f \mapsto f^{\Delta}$ is well-defined (ii) $f^{\Delta 0} = f$ φ is a bijection (iii) $f c g \longrightarrow g^{\Delta} c f^{\Delta}$ φ is order reversing (iv) $\dim f^{\Delta} = d-1 - \dim f$ $F(P)^{\circ P} \simeq F(P^{\circ})$

Proof sketch: (not included in the lecture)

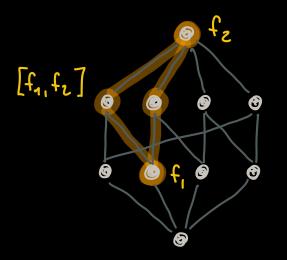
- (i) $f^{a} = \bigcap (P^{o} \cap \partial H(x, 1))$ is intersection $x \in F_{o}(P)$ of facer, hence a face
- (ii) similar computation to $P^{\circ\circ} = P$ (iii) trivial (iv) (*)

• a polytope is called (combinatorially) self-dual if $F(P) \cong F(P)^{op}$

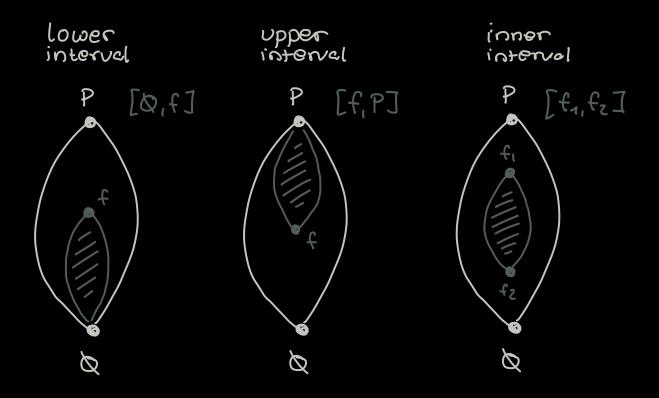
Ц

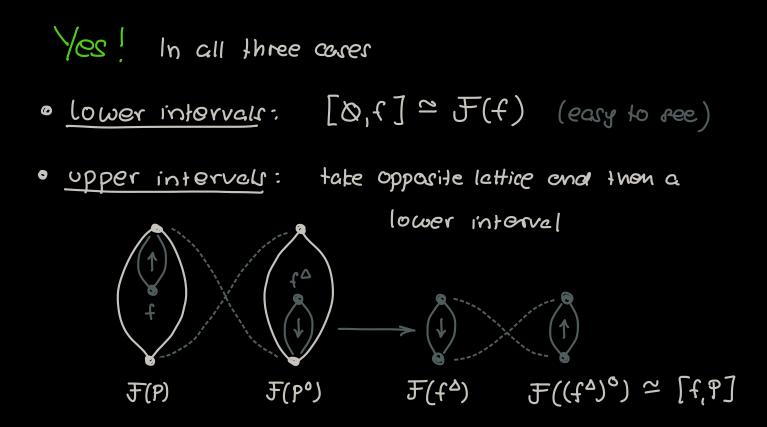
Open: If P is self-cluel, is it combinatorially equivalent to a self-polor polytope? 2.6. Intervals and vertex figures

 $\frac{\text{Def}}{\text{[f_1,f_2]}}:= \begin{cases} g \in F(P) & \text{the interval is} \\ f_1, f_2] & \text{:=} \end{cases}$

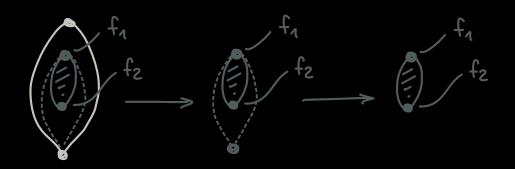


Question: Are intervals in face lettices again face lettices of some polytopes?



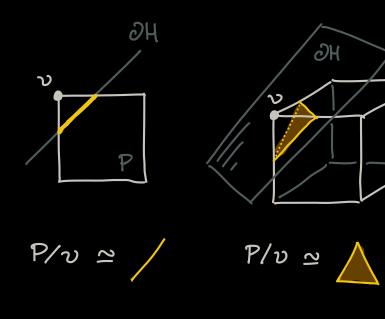


• inner intervals: take lower interval and they Upper interval



For a vertex UE Fo(P) there exists a nice geometric interpretation for the uppor intervel

> $[v, P] \cong \mathcal{F}(P/v)$ 1 veriex figure



Otl... hyperplene thet separates v (rem Fo(P)\?v}

P/2 := Pn dH

 \underline{NOTE} : clepends on choice of of

BUT combinistance is independent of ott.

ldec :

Using that P/wir a (d-1)-polytope one can now finally prove all of (*) Ex: try it!

- face lattice is gradeal = all maximal chains have lensin al-1
- cluci lo d-loce nos dimension d-l-d
- · each polytope has a facet (l'dea: take and of varies)
- · each face is intersection of some facets